a2 United States Patent

Kwon et al.

US009460176B2

US 9,460,176 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)
(52)

(58)

(56)

5,897,632 A *
7,318,076 B2*
2005/0223022 Al*
2007/0271211 Al1*
2008/0082540 Al*

IN-MEMORY DATABASE FOR
MULTI-TENANCY

Inventors: Yong Sik Kwon, Seocho-Ku (KR);
Yongsik Yoon, Songpa-Gu (KR); Joo
Yeon Lee, Anyang-Si (KR); Oliver
Steinau, Mannheim (DE); Markus
Hartmann, Beindersheim (DE)

Assignee: SAP SE, Waldorf (DE)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 406 days.
Appl. No.: 12/980,901
Filed: Dec. 29, 2010
Prior Publication Data

US 2012/0173589 Al Jul. 5, 2012

Int. CL.

GOG6F 17/30 (2006.01)

U.S. CL

CPC e GO6F 17/30575 (2013.01)
Field of Classification Search

CPC ... GOGF 17/30595; GOGF 17/30607,
GOGF 17/30389; GOGF 17/30442; GOGF
17/30477; GOGF 17/30292

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

4/1999
1/2008
10/2005
11/2007
4/2008

Dar et al.

Chen et al.

Weissman GOGF 17/30595
Butcher et al.ccccevene. 707/1
Weissman GOGF 21/6227

1200

OTHER PUBLICATIONS

“MySQL 5.0 Reference Manual” revision 34567 (Mar. 8, 2013)
downloads.mysql.com/docs/refman-5.0-en.a4 pdf.*

“Efficient Keyword Search Across Heterogeneous Relational Data-
bases” (Apr. 2007) Mayssam Sayyadian, Hieu LeKhac, AnHai
Doan, Luis Gravano.*

“MySQL 5.0 Reference Manual” section 3.3.1 as archived Oct. 24,
2005 http://web.archive.org/web/2005102404534 1 /http://dev.
mysql.com/doc/refman/5.0/en/creating-database html.*

“MySQL 5.0 Reference Manual” Section 3.3.2 as archived Oct. 23,
2005 http://web.archive.org/web/20051023013237/http://dev.
mysql.com/doc/refman/5.0/en/creating-tables html. *

“MySQL 5.0 Reference Manual” section 3.3.3 as archived Oct. 24,
2005 http://web.archive.org/web/2005102404 1409/http://dev.
mysql.com/doc/refman/5.0/en/loading-tables html.*

“MySQL 5.0 Reference Manual” section 3.6.6 as archived Oct. 26,
2005 http://web.archive.org/web/20051026052347/http://dev.
mysql.com/doc/refman/5.0/en/example-foreign-keys.html. *

(Continued)

Primary Examiner — Angelica Ruiz
(74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris
Glovsky and Popeo, P.C.

(57) ABSTRACT

An in-memory database server hosting a tenant of a multi-
tenant software architecture can receive a definition of a
custom data field that is unique to an organization having
isolated access to the tenant. The custom data field can
extend a standard table defined by central metadata stored at
a system tenant of the multi-tenant software architecture.
Tenant private metadata that includes the definition can be
stored in memory accessible only to the tenant. A tenant-
dependent table that includes the custom data field can be
formed, for example by retrieving central metadata defining
the standard table from the system tenant and adding the
custom data field using the definition. The tenant-dependent
table can be presented for access via a database client at the
organization. Related systems, articles of manufacture, and
computer-implemented methods are disclosed.

22 Claims, 12 Drawing Sheets

1202 ~ |

RECEIVE DEFINITION OF CUSTOM DATA FIELD UNIQUE TO AN ORGANIZATION

HAVING ISOLATED ACCESS TO TENANT OF MULTI-TENANT SOFTWARE
ARCHITECTURE AT IN-MEMORY DATABASE SERVER HOSTING TENANT.

1204 ~ |

STORE TENANT PRIVATE METADATA INCLUDING DEFINITION IN MEMORY
ACCESSIBLE ONLY TO TENANT.

FORM TENANT-DEPENDENT TABLE THAT INCLUDES CUSTOM DATA FIELD BY

1206 ~_|

RETRIEVING CENTRAL METADATA DEFINING STANDARD TABLE FROM SYSTEM
TENANT AND ADDING CUSTOM DATA FIELD USING DEFINITION.

__1

r -
1210 ~ RECEIVE SECOND DEFINITION OF A CUSTOMIZED TENANT PRIVATE TABLE |
L UNIQUE TO TENANT BY IN-MEMORY DATABASE SERVER, |

1212 \lf STORE ADDITIONAL TENANT PRIVATE METADATA THAT INCLUDE SECOND _i
L EEENEIEN IN MEMORY ACCESSIBLE ONLY TO TENANT. |
1214 —_| PRESENT ONE OR MORE OF TENANT-DEPENDENT AND PRIVATE TABLE FOR

ACCESS VIA DATABASE CLIENT AT ORGANIZATION,

US 9,460,176 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“MySQL 5.0 Reference Manual” section 5.8.2 as archived Oct. 23,
2005 http://web.archive.org/web/20051023004827/http://dev.
mysql.com/doc/refman/5.0/en/adding-users. html.*

“MySQL 5.0 Reference Manual” section 14.3 as archived Oct. 18,
2005.*

“MySQL 5.0 Reference Manual” section 14.6.3 as archived Oct. 28,
2005 http://web.archive.org/web/20051028044739/http://dev.
mysql.com/doc/refman/5.0/en/federated-use html.*

“Multi-Tenant Databases for Software as a Service Schema-Map-
ping Techniques” Stefan Aulbach, Torsten Grust, Dean Jacobs,
Alfons Kemper & Jan Rittinger, As presented at SIGMOD 08 (Jun.
9-12, 2008).*

“An Access Authorization Model for Relational Databases Based on
Algebraic Manipulation of View Definitions” Amihai Motro
(1989).*

“Solid-State drive” Wikipedia.com as pulled from edit history (Dec.
15, 2009).*

“Automatic Virtual Machine Configuration for Database Work-
loads” Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga
and Kenneth Salem (Feb. 2010).*

* cited by examiner

US 9,460,176 B2

Sheet 1 of 12

Oct. 4, 2016

U.S. Patent

L Ol
AQS 'SNvdL) 0S) J9YHOLS MsIa _5><2ov
439907 i 3AYTIONILSISHIA | INIWIOVNVA 30vd
\
-z
ik — — — —
Vel vl 2 4
siins3ad\ || adols IHOLS OIS 3Y401S HIDOYNYW
dWaL 40 MSIa NWNT102 MOY v1vavL3n
oy SANIONT TYNOLLY 13 AMOWIA-NI .
I 4
— 051 YAV NOILNO3X3 |
SIT [521 M3ZINILDO IR
— HIADYNYW
JOMINOD |81 INIONI NOILYINDIVO _ NOILYZINOHLAY
H3OVNVIN %“%ww%w INIONT _— 1dIMDS || ¥3SUVd
NOILOV 153n03y ONINNY1d 8 |[LS3INDIM
SNveL ; ; ; X
~ooel | N el Nzel N~ 0zl

SH3LINVHVd
NOISS3S

701 INFWIOVYNYIN NOISSIS ANV NOILOINNOD _

o™
—

\
oLl

SIN3MO

_.1@.%

00}

US 9,460,176 B2

Sheet 2 of 12

Oct. 4, 2016

U.S. Patent

¢ OId
y12 p1Z 12
e e S e e "
] |] 1} 1
“ vLva \ // yiva vivd vlva h viva v1va !
VI\CINNEL ST\ INYNEL INYN3L INVNIL /|5 |\ INwNAL INYNIL /|
! ! | ry Y "" X r Y !
h ! m v v "" \ 4 A 4 !
|| SS3008d |1 1| SS300¥d | ||| $S300ud ||| | $5300ud ||} || SSF00Md | ||| SST00Nd ||
VI oYIAdas [|| ¥3aeas EEINER dIANES ||| ¥3Au3s YIS ||
V| [3svavlva ||l || 3Svaviva||||3Svaviva||||3svaviva ||| 3svaviva ||| (3svaviva ||
ool 7 =11 ol 7 e A 2l H] e a— 7
A2 R SR/ | U R U SRl H U A /v A | T3
PUONINYNSL |0 '] GINYNAL || pINYNIL || €INVNIL [1!f Z INWNAL | INVNAL |1
_ b ¥ | N3LSAS
| 0lZ |[ISOH! | Ok LSOH }i O LSOH !
'J\\\.\ /A:\I‘}
\\Im\' 90C
MHOMLIN
\l_\l\(
1.‘% N3O a@ﬂ MERR a@ﬂ IN3O
702 ¥0C 4
S NOILYZINYOHO € NOILYZINYDYHO | NOILYZINYDHO
%@la MERFEEN %@ﬂ INGMD] aa NGO |
v0C ¢ ¥0C A/
N NOILYZINYOHO 7 NOILYZINYOHO Z NOILVZINYOHO

002

US 9,460,176 B2

Sheet 3 of 12

Oct. 4, 2016

U.S. Patent

€ 'Old
piz p12 y12

haddedtdbnleded .: rmommmmmeo-- i rmmmm- oo -) rooooooomoos T !
| (NOILILYvd) | . (Nondvd) A X /NolLiLdvd) | 1 (NolLILavd) /4 X (NOlLILyvd) |
b\ vwva P\ vva S L\ wva S "
" ! | b b o !
“ ! i r L - !
| | $53004d | ! ! |$S3008d | 1 | [$S300Md | i ! [SS300ud | 1} [$5300dd | i
V| wEnEs | Dl MIAMIS || MIAMES || u3AMES |1)| y3auEs |
| |3svaviva | | |3svavlva| ;! |3svaviva| ¢ ! |3svaviva| 1 ! |3svaviva |
mNS\ ! ' 201 L lzon L z0 700 L

1 I P! 1t p ! 1
“ ! ! o ' - I WALSAS

E.@. INITO | a% NGO] Eqa IMECI
¥0C vz ¥02
§ NOILVZINYDHO € NOILYZINVOMO | NOILYZINYDMO
a% NGO] ama NERSE
02 oz
NOILVZINYDNO Z NOILVZINVDYO

00e

US 9,460,176 B2

Sheet 4 of 12

Oct. 4, 2016

U.S. Patent

v Old
AN
HIOYNYW
NOILOVSNYML
[74) 051
HIOYNYI SINNTOA
V1VaYLIW wsia
¥ov
NIYWOQ 0z an Y3AYIS
NOILOVSNVYL 1SOH 3svaviva
20
HIANIS
JNYN
Y4 W3LSAS

oov

US 9,460,176 B2

Sheet 5 of 12

Oct. 4, 2016

U.S. Patent

S "OlId

0¥l Y3AVT
JON31SISH3d
_
b 3¥0lS
AHOWIN-NI

U2 ARSEINE
JONILSISYAd

_
IENE
AJOWIN-NI

I S\

NOILND3X3

20!
d3Ad3S 3SYavLvd

IR EIN A
NOILNOAXd

0P} H3AYT
JONILSISHA

_
¥l 3H¥OLS
AHOWIN-NI

AR ENA

20l
43AH3S 38Yavivd

NOILNO3X3

ok
Y3aAY3S 3svavlvad

005

US 9,460,176 B2

Sheet 6 of 12

Oct. 4, 2016

U.S. Patent

9 'OId

O4NI NOILNELSId
[AD070d01 40 AdOD

D

A
_ o L
AV RS E MRS 909 y3angIs |
3Svaviva INYN IAVIS |
r 01e 1SOH
O4NI NOILNGMLSIA
JAD0710dOL 40 AdOD
A
=== 08 h : NEINER
0} yanuas 909 y3nyas | I O4NI NOILNEIYLS]
3svavlva INWNIAVIS [3 LSV /AD0T0d0L
: -
] e LSOH wog —
o9 —
O4NI NOILNERLSIA
/AD010dOL 40 AdOD
)
__ s /4
0l y3aau3s 909 y3nyas |
3svaviva INYNIAYIS |
r 0z 1SOH

009

US 9,460,176 B2

Sheet 7 of 12

Oct. 4, 2016

U.S. Patent

423 AAVIS VIVAYLIW
d3AE3S 3Svavivd

(S)ININOdWOD ¥3HLO H—
|

HIOVYNYI VIVAYLIW a

A

]
VIVav1an
TVdLIN3D
h

| Y3IOVNVYAVLYaYIAN -

L '9Ol4
vl AAYIS YIVAYLIN
HIAYIS ISVavLva
| (S)LNaNodwoo waHIO H— 204
|
¥IOVNYAVIVaYIAN (- G
A
]
LINET L.
TVHINID 40 AdOD -
A
e
| u39vNVA vIvavLIW _
_ I
(S)ININOJWOD ¥3HIO H— 0L | 1F]] YIS YIYOYLAN
H3LSYIN YIVAVIIN vO0T | GFC d3AYSS 38vavLvd
0IZ H3AMISISVEVIVA |) o4, (S)LNINOdWOO ¥aHLO H— 0L
]
\ UIOYNYN VLIYAYLIN
A

|
A VLVQYLAN 2L
WHLNID 40 AdOD
¥ 3

el —

I
(S)ININOJWOD ¥3HLO H~

Y3ALSYIN YLYQYLIN TYHLNID
90 ¥3AM3S 3SvAvLYA

1|

€0l
el

y0.

cel
A

0ic

LSCH

T

HIOVNYN YIVAYLINW

|
D8 N{) NaNodWoo ¥aHIo - 2L

Y3LSYA YIVAVLIW TvOO01 0le
012 d3IAY3S 38VavLva 1SOH

004

US 9,460,176 B2

Sheet 8 of 12

Oct. 4, 2016

U.S. Patent

v08

v08

¥08

Ll

X

€eL

d

v

00€ LNVN3L NI LL

q

zZ

008

e

Z

044

9

g

v

00¢ INVN3LNI'LL

2

M

0L

0

A

69/

9]

g

v

00L LNVN3L NI L1

8 "OId

c08

g 008 00¢
e L1 00€
g (27 00€
Y 102 001
2 042 00¢
Y 69/ 00l
0 V |INVN3L
11378v1

008

US 9,460,176 B2

Sheet 9 of 12

Oct. 4, 2016

U.S. Patent

6 OId

¥04 SNOISNALX3 S3ANI43a
_ A8 03NI43a _ & Ag @3aNI43a _ _ Ag d3NL3a &
y
VLVaYLIW S31avL s31avl s31avL
3LYAIN JUVAIN aN3d3a ﬁ«m%mm_\”,v_ NIJIANI
976 INYN3L | | 575 INVNAL | | 775 LNVNEL Yo7 915 INVN3L
INYN3L .,H« «L
TNON. I~ 906
YIHIO INYNAL WILSAS
/_/ 0Z6
A\ 4 A\ 4 A 4 .NlH!Nl
NIYWOQ —
1 NolLovsNwiL 20z INWN3L W3LSAS
oy
$S300%d vy
/7| _N2ISAS 4O (EINER
206 INVYN3L)
HIAY3S IN3ITD
e FAMOAMSI 3svaviva 3svaviva
06 ,
201 _/ 90} \

006

US 9,460,176 B2

Sheet 10 of 12

Oct. 4, 2016

U.S. Patent

0L "OId

VIvVAvLaIW

AIIII_

016 3LVARd 0c6
STTavL INVNAL
716 TAd INYN3L TYWHON
STavl
216 -\ ‘930 LNYNIL
VIVOVLaN —
016 3LVAINd 0ct
STavL INYNAL
716 <\ LAd INYN3L TYAHON
STavL
216 ~_'d3a LNYNIL
VIVOYLaW —
016 JUVAR c0e
STavL INYN3L
p16 ~_LAd INVN3L TWAHON
STavL
216 ~_'d3a INYN3L

\mm._mﬁ d3aNI

916 LNVYN4L

VivavLiaw

Y

¥0Z IVYIN3D
200l "O4NI AINO

-0V QFAvHS
/

o

h 4

906

INVYNGL
W3LSAS

0001

US 9,460,176 B2

Sheet 11 of 12

Oct. 4, 2016

U.S. Patent

L "OId

SINVNSL ¥3H10 WOHH4 SS300V SINVN3L ¥3H10 WONHA mm,ﬁm<._>m_m<w
ON HLIM INVN3L 40 V1VAVLIW 31VAIYd SY J3H0LS SS300V ON HLIM LNYN3L INYNZL
40 VLVQ F1VARYd SY Q3401S
INVYN3L 40 Y1VAvLIW LINVN3L OL J1LVAIYd s37aYL
41VAIMd SV J3401S SNOISNTLXT Jl41034S-LNYNIL INJINOD HLIM LNVYNIL IN3IAN343d
"SLNVNIL ¥3H10 WOY4 SS3O0V AV HLIM LNYNAL HOV3 NI LSIX3 318VL 40 INVNL
W3LSAS NI ATIVHLNID d340LS NOILINI43d 318Vl SIONVLSNI LNIAN3J3ANI
SINVNAL s31avl
SINVNILH3HIO
. 43HLO WOY4 SS30JV Av3y LN3ANZd3aNI
WNOH4 SS300V Avad INYNIL W3LSAS NI A3H0LS INVNTL WILSAS NI G34OLS INVN3L
Vivavi3aw (V1va) INIINOD F18vL

00k}

¢l "Old

US 9,460,176 B2

‘NOLLYZINYOYO 1V IN3I70 3SVavLvad VIA SS300V
d04 319VL I1VAIYd ANV INIONIJIA-LNYNIL 40 THOW HO INO IN3SIHd | ™~ plel

Sheet 12 of 12

INYN3L OL AINO T9ISSI0OV AONIN NINOLLINIAZa]
ONOD3S JANTONI LVHL VIVAYLIN ILVAINA INYNILTYNOILAaY THo1s < 71z,

HIAY3S ISYAVYLIVA AHJOWIIN-NI A8 LNVYNIL O1 INDINN 1
318VL 3LVARYd INVYNIL Q3ZINOLSND ¥ 40 NOILINIA3A ANOD3S JAIFOTY I~ 0Lg)

‘NOLLINIZ=3d ONISN d1314 YLVA WOLSND ONIAAY aNY LNYN3L
W3LSAS WO 378V1 GHVYANVLS ONINIZZA VLYAVLIN TYHLINIO ONIATIYLTY
A8 d1314 VIYA WOLSNO SIANTONI LVHL 318V1 INJANI4IA-LNYNIL WHO4

Oct. 4, 2016

INVN3L OL AINO 3718ISS300V
AHOWSIA NINOILLINIZ3A ONIGNTONI YLYAVLIW FIVAIEd INYNIL IHOLS [\~ voz)

INVNZL ONILSOH H3AYIS 3SYaVLYA AYOWIA-NI 1Y IINLOILIHOHY
FdYMLIOS INVNIL-1LINN 40 INVNIL OL SSIOV A3LY10S! ONIAVH
NOILVZINYOHO NV OL 3NDINN a1314 Y1vVA WO1SND 40 NOILINI43d 3AIF03Y

U.S. Patent

4

US 9,460,176 B2

1
IN-MEMORY DATABASE FOR
MULTI-TENANCY

TECHNICAL FIELD

The subject matter described herein relates to the used of
in-memory database technology in conjunction with a multi-
tenant software delivery architecture.

BACKGROUND

Various organizations make use of enterprise resource
planning (ERP) software architectures to provide an inte-
grated, computer-based system for management of internal
and external resources, such as for example tangible assets,
financial resources, materials, customer relationships, and
human resources. In general, an ERP software architecture is
designed to facilitate the flow of information between busi-
ness functions inside the boundaries of the organization and
manage the connections to outside service providers, stake-
holders, and the like. Such architectures often include one or
more centralized databases accessible by a core software
platform that consolidates business operations, including but
not limited to those provided by third party vendors, into a
uniform and organization-wide system environment. The
core software platform can reside on a centralized server or
alternatively be distributed across modular hardware and
software units that provide “services” and communicate on
a local area network or over a network, such as for example
the Internet, a wide area network, a local area network, or the
like.

As part of the installation process of the core software
platform on computing hardware owned or operated by the
organization, one or more customized features, configura-
tions, business processes, or the like may be added to the
default, preprogrammed features such that the core software
platform is configured for maximum compatibility with the
organization’s business processes, data, and the like.

The core software platform of an ERP software architec-
ture can be provided as a standalone, customized software
installation that runs on one or more processors that are
under the control of the organization. This arrangement can
be very effective for a large-scale organization that has very
sophisticated in-house information technology (IT) staff and
for whom a sizable capital investment in computing hard-
ware and consulting services required to customize a com-
mercially available ERP solution to work with organization-
specific business processes and functions is feasible. Smaller
organizations can also benefit from use of ERP functionality.
However, such an organization may lack the necessary
hardware resources, IT support, and/or consulting budget
necessary to make use of a standalone ERP software archi-
tecture product and can in some cases be more effectively
served by a software as a service (SaaS) arrangement in
which the ERP system architecture is hosted on computing
hardware such as servers and data repositories that are
maintained remotely from the organization’s location and
accessed by authorized users at the organization via a thin
client, such as for example a web browser, over a network.

SUMMARY

In one aspect, a computer-implemented method includes
receiving, at an in-memory database server hosting a tenant
of a multi-tenant software architecture, a definition of a
custom data field that is unique to an organization having
isolated access to the tenant. The custom data field extends

10

15

20

25

30

35

40

45

50

55

60

65

2

a standard table defined by central metadata stored at a
system tenant of the multi-tenant software architecture.
Tenant private metadata that includes the definition are
stored in memory accessible only to the tenant. A tenant-
dependent table that includes the custom data field is form.
The forming includes retrieving, from the system tenant,
central metadata defining the standard table and adding the
custom data field using the definition. The tenant-dependent
table is presented for access via a database client at the
organization.

In some variations one or more of the following can
optionally be included. A second definition of a customized
tenant private table that is unique to the tenant can be
received at the in-memory database server. Additional tenant
private metadata that include the second definition can be
stored in the memory accessible only to the tenant, and the
tenant private table can be presented for access via the
database client at the organization. The multi-tenant soft-
ware architecture can include a plurality of tenants hosted at
a backend system. Each tenant of the plurality of tenants can
include its own dedicated in-memory database server having
unique access to tenant-specific data. At least one of the
plurality of database servers can be provided via each of a
plurality of hosts on the backend system. The plurality of
database servers can share the central metadata of the system
tenant. The system tenant can include a central metadata
master database server responsible for creating and main-
taining the central metadata. Each host of the plurality of
hosts can include a local metadata master database server
that receives a copy of the central metadata from the central
metadata master database server. An updated definition of a
tenant dependent table that is available to all of the plurality
of tenants can be received at the central metadata master
database server. New central metadata that include the
updated definition can be stored in a system tenant memory
accessible only to the system tenant. The new central
metadata can be propagated to each local metadata master
database server for use by the plurality of tenants.

It should be noted that, while the descriptions of specific
implementations of the current subject matter discuss deliv-
ery of enterprise resource planning software to multiple
organizations via a multi-tenant system, the current subject
matter is applicable to other types of software and data
services access as well. The scope of the subject matter
claimed below therefore should not be limited except by the
actual language of the claims.

Articles are also described that comprise a tangibly
embodied machine-readable medium operable to cause one
or more machines (e.g., computers, etc.) to result in opera-
tions described herein. Similarly, computer systems are also
described that may include a processor and a memory
coupled to the processor. The memory may include one or
more programs that cause the processor to perform one or
more of the operations described herein.

The details of one or more variations of the subject matter
described herein are set forth in the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, show certain
aspects of the subject matter disclosed herein and, together

US 9,460,176 B2

3

with the description, help explain some of the principles
associated with the disclosed implementations. In the draw-
ings,

FIG. 1 is a diagram illustrating features of an in-memory
database server;

FIG. 2 is a diagram illustrating features of a multi-tenant
architecture using an in-memory database server with mul-
tiple tenants per host;

FIG. 3 is a diagram illustrating features of a multi-tenant
architecture using an in-memory database server with a
single tenant per host;

FIG. 4 is a diagram illustrating features of a distributed,
in-memory system;

FIG. 5 is a diagram illustrating features of data sharing
between in-memory database servers;

FIG. 6 is a diagram illustrating features of a system
including a master name server and slave name servers;

FIG. 7 is a diagram illustrating features of an architecture
for replication of central metadata;

FIG. 8 shows a tables illustrating division of data among
tenants in an in-memory multi-tenant architecture;

FIG. 9 is a diagram illustrating features of a multi-tenant
architecture in an in-memory database system

FIG. 10 is a diagram illustrating sharing of data and
metadata in a multi-tenant architecture;

FIG. 11 shows a table listing features of different types of
database tables in an in-memory multi-tenant architecture;
and

FIG. 12 is a process flow diagram illustrating aspects of
a method.

When practical, similar reference numbers denote similar
structures, features, or elements.

DETAILED DESCRIPTION

Previously available database management systems have
typically been designed for optimizing performance on
hardware with limited main memory and with the slow disk
input/output (I/O) as the main bottleneck. The typical focus
in architecture design was on optimizing disk access, for
example by minimizing a number of disk pages to be read
in to main memory when processing a query.

Computer architectures have changed substantially over
time. With multi-core central processing units (CPUs), par-
allel processing is possible with fast communication
between processor cores, for example via main memory or
one or more shared caches. Main memory is also much less
likely to be a limited resource thanks to ever decreasing
costs. Servers with more than 2 TB RAM are currently
available. Modern computer architectures create new pos-
sibilities but also new challenges. With all relevant data in
memory, disk access is no longer a limiting factor for
performance. Server processors can currently have up to 64
cores and 128 cores will come in the near future. With the
increasing number of cores, CPUs will able to process more
and more data per time interval. Thus, the performance
bottlenecks more commonly occur between the CPU cache
and main memory than due to disk read/write processes.
Traditional databases of online transaction processing sys-
tems typically do not make the most efficient use of currently
available hardware. In a memory resident traditional data-
base management system, the CPU can spend as much as
half of its execution time in stalls, for example waiting for
data being loaded from main memory into the CPU cache.

To address these and potentially other issues with cur-
rently available solutions, one or more implementations of
the current subject matter provide methods, systems, articles

10

15

20

25

30

35

40

45

50

55

60

65

4

or manufacture, and the like that can, among other possible
advantages, provide a multi-tenancy software architecture
employing in-memory database technologies and, in at least
some implementations, cache aware memory, optimization,
and execution; support for parallel execution; and the like.

In a software delivery configuration in which services
provided to each of multiple organizations are hosted on a
dedicated system that is accessible only to that organization,
the software installation at the dedicated system can be
customized and configured in a manner similar to the
above-described example of a standalone, customized soft-
ware installation running locally on the organization’s hard-
ware. However, to make more efficient use of computing
resources of the SaaS provider and to provide important
performance redundancies and better reliability, it can be
advantageous to host multiple tenants on a single system that
includes multiple servers and that maintains data for all of
the multiple tenants in a secure manner while also providing
customized solutions that are tailored to each tenant’s busi-
ness processes.

Such an approach can introduce several challenges. Mak-
ing modifications to the core software platform, for example
updating to a new version, implementing a change to the
core functionality, or the like, can become a complicated and
unpredictable process if each tenant’s customized data
objects and other tenant-specific configurations do not react
in the same manner to the modifications. Additionally,
during a lifecycle management event, such as for example an
upgrade or update, many application specific tasks may have
to be executed in a multi-tenant system. One or more of
these actions have to run on every business tenant that exists
in the multi-tenant system. However, to start a task on a
specific tenant, a user logon with password can be necessary,
thereby requiring that the lifecycle management procedure
have ready access to authentication information, such as for
example user names and passwords, for each tenant.

According to the current subject matter, all relevant data
can be kept in main memory, so read operations can be
executed without disk read and write operations. Disk-based
index structures, for example, are not needed for an in-
memory database. Disk storage is still necessary to make
changes durable, but the required disk write operations can
be performed asynchronously in the background. In addi-
tion, disk storage can be used to store aged data that is not
needed during normal operations.

Architectures consistent with the current subject matter
can minimize the number of CPU cache misses and avoid
CPU stalls because of memory access. One approach for
achieving this goal is using column based storage in
memory. Search operations or operations on one column can
be implemented as loops on data stored in contiguous
memory arrays, which can result in high spatial locality of
data and instructions, so the operations can be executed
completely in the CPU cache without costly random
memory accesses.

Recent improvements in CPU processing speed have
generally not resulted from increased processor clock
speeds. Rather, the number of processor cores has increased.
To maximize efficiency, software must make use of multi
core CPUs by allowing parallel execution and including
architectures that scale well with the number of cores. For
data management systems, it is advantageous to allow
partitioning of data in sections for which the calculations can
be executed in parallel. To ensure scalability, sequential
processing—for example enforced by locking—can advan-
tageously be avoided.

US 9,460,176 B2

5

FIG. 1 shows a block diagram of an in-memory relational
database server 100 consistent with implementations of the
current subject matter. A connection and session manage-
ment component 102 of an in-memory database system 104
creates and manages sessions and connections for the data-
base clients 106. For each session a set of parameters 110 is
maintained such as for example auto commit settings or the
current transaction isolation level. Once a session is estab-
lished, database clients 106 can use logical (e.g. SQL)
statements to communicate with the in-memory database
system 104. For analytical applications the multidimen-
sional query language MDX can also be supported.

Each statement can be processed in the context of a
transaction. New sessions can be implicitly assigned to a
new transaction. A transaction manager 112 can coordinate
transactions, control transactional isolation, and keep track
of running and closed transactions. When a transaction is
committed or rolled back, the transaction manager 112 can
inform the involved engines about this event so they can
execute necessary actions. The transaction manager 112 can
cooperate with a persistence layer to achieve atomic and
durable transactions.

Requests received from the database clients 106 can be
analyzed and executed by a set of request processing and
execution control components 116, which can include a
request parser 120 that analyses a request from a database
client 106 and dispatches it to a responsible component.
Transaction control statements can, for example, be for-
warded to the transaction manager 112, data definition
statements can be dispatched to a metadata manager 122 and
object invocations can be forwarded to an in-memory object
store 124. Data manipulation statements can be forwarded to
an optimizer 126, which creates an optimized execution plan
that is provided to an execution layer 130. The execution
layer 130 can act as a controller that invokes the different
engines and routes intermediate results to a next phase in
execution of the execution plan.

Built-in support can be offered for domain-specific mod-
els (such as for financial planning) scripting capabilities that
allow to run application-specific calculations inside
NewDB. A scripting language, for example SQL Script 132,
which is based on side effect free functions that operate on
tables using SQL queries for set processing, can be used to
enable optimizations and parallelization. The MDX lan-
guage 134 can be used to provide support for multidimen-
sional queries. A planning engine 136 can allow financial
planning applications to execute basic planning operations
in the database layer. An example of a basic planning
operation is to create a new version of a data set as a copy
of'an existing one while applying filters and transformations.
For example, planning data for a new year can be created as
a copy of the data from the previous year. This operation
requires filtering by year and updating the time dimension.
Another example of a planning operation can be a disag-
gregation operation that distributes target values from higher
to lower aggregation levels based on a distribution function.

Features such as SQL Script 132, MDX 134, and planning
engine 136 operations can be implemented using a common
infrastructure called a calculation engine 138. Metadata can
be accessed via the metadata manager component 122.
Metadata can include a variety of objects, such as for
example definitions of relational tables, columns, views,
indexes, SQL Script functions, object store metadata, and
the like. All of these types of metadata can be stored in a
common catalog for all stores (in-memory row store, in-
memory column store, object store, disk based). Metadata
can be stored in tables in row store. In multi-tenant systems

10

15

20

25

30

35

40

45

50

55

60

65

6

and in distributed systems, central metadata can be shared
across servers and tenants as discussed in greater detail
below. How metadata is stored and shared can be hidden
from the components that use the metadata manager 122.

One or more relational engines 140, for example an
in-memory row store 142, an in-memory column store 144,
a disk-based store 146, and the in-memory object store 124
mentioned above can communicate with the request pro-
cessing and execution control components 116, the metadata
manager 122, and the in-memory persistence layer 114. The
row store 142 and column store 144 are each relational
in-memory data engines that can store data in a row-based
or column-based way, respectively. Some data, such as for
example tracing data, need not be kept in memory all the
time. The disk-based store 146 can handle such data. Data in
the disk-based store 146 can be primarily stored in disk
storage 150 and only moved to memory buffers (e.g the
persistence layer 114 when accessed.

When a table is created, the table can be specified in the
store in which it is located. Table can be moved to different
stores at a time after their creation. Certain SQL extensions
can optionally be available only for specific stores (such as
for example the “merge” command for a column store).
However, standard SQL can be used on all tables. It is also
possible to combine tables from different stores in one
statement (e.g. using a join, sub query, union, or the like).

As row based tables and columnar tables can be combined
in one SQL statement, the corresponding engines must be
able to consume intermediate results created by the other.
Two engines can differ in the way they process data. Row
store operations, for example, can process data in a row-at-
a-time fashion using iterators. Column store operations
(such as for example scan, aggregate, and so on) can require
that the entire column is available in contiguous memory
locations. To exchange intermediate results, a row store can
provide results to a column store materialized as complete
rows in memory while a column store can expose results
using the iterator interface needed by a row store.

The persistence layer 114 can be responsible for durability
and atomicity of transactions and can ensure that the data-
base is restored to the most recent committed state after a
restart and that transactions are either completely executed
or completely undone. To achieve this goal in an efficient
way, the persistence layer 114 can use a combination of
write-ahead logs, shadow paging and save points. The
persistence layer 114 can offer interfaces for writing and
reading data and can also contain a logger 152 that manages
the transaction log. Log entries can be written implicitly by
the persistence layer 114 when data are written via a
persistence interface or explicitly by using a log interface.

An authorization manager 154 can be invoked by other
components of the architecture to check whether a user has
the required privileges to execute the requested operations.
Privileges can be granted to users or roles. A privilege grants
the right to perform a specified operation (such as for
example create, update, select, execute, and the like) on a
specified object (such as for example a table, view, SQL
Script function, and the like). Analytic privileges that rep-
resent filters or hierarchy drill down limitations for analyti-
cal queries can also be supported. Analytical privileges can
grant access to values with a certain combination of dimen-
sion attributes. This could for example be used to restrict
access to a cube with sales data to values with dimension
attributes such as region="US” and year="2010.”

Implementations of the current subject matter can include
features of distributed architectures that provide multi-ten-
ant support and data distribution that enables scalability.

US 9,460,176 B2

7

Multi tenant support, as described above, allows hosting
multiple “virtual” systems inside one physical system with
isolation of the virtual systems from each other. The current
subject matter supports tenant isolation on a database level.
In a multi-tenant implementation, isolation can be achieved
by having separate database processes and separate disk
volumes for the different tenants. Thus, a multi-tenant archi-
tecture can be distributed across multiple database server
processes 102, such as that shown in FIG. 1.

As shown in the architecture 200 of the diagram shown in
FIG. 2, multiple tenants 202, each isolated from one another
and available to be accessed by clients 106 within a separate
organization 204 via a network 206, can be hosted by the
same host 210. A host 210 can be a virtual machine on a
larger system 212 or one or more physical processors.
Tenants 202 can also be distributed across multiple host
processes 210. Data distribution means that tables or ranges
within tables are assigned to different database partitions
that are assigned to different host processes 210 for scal-
ability reasons. Each tenant 202 can be served by a single
database server process 102 accessing tenant data 214 for
the respective tenant 202 that is isolated form all other
tenants 202.

FIG. 3 shows an example of a system architecture 300
consistent with an implementation that includes data distri-
bution for scalability reasons. Such a configuration can be
used for large, on-premise or stand-alone systems with high
performance requirements. Each data server process 102 and
its associated data partition 302 is assigned to a discrete host
210. Again, a host 210 can be a virtual machine on a larger
system 212 or one or more physical processors.

FIG. 4 shows a box diagram of a distributed, in-memory
system 400 consistent with at least one implementation of
the current subject matter. A distributed system 212 can
include multiple database servers 102, each of which con-
tains all or at least some of the components shown in FIG.
1 and described above. Each database server 102 can include
a separate operating system process and its own disk
volume(s) 150. The database servers 102 of a distributed
system 212 can be distributed across multiple hosts 210, but
it is also possible to run multiple database servers 102 on one
host 210. During processing of database operations, data-
base servers 102 can forward the execution of some opera-
tions to other database servers 102 that own data involved in
the operation.

In a data distribution scenario, for example without tenant
separation, the database clients 106 need not know about the
distribution. They may send their requests to any database
server 102. If the server 102 does not own all data involved,
it can delegate the execution of some operations to other
database servers 102, collect the result and return it to the
database client 106. In a distributed system, execution plans
can contain operations that are executed on remote servers
102. The execution control layer 116 of each database server
102 can connect to the execution control layers 116 of other
database servers 102 of the same distributed system 212 to
request remote execution of operations, such as for example
as shown in the data exchange diagram 500 of FIG. 5.

In a distributed system, a central component, referred to
herein as a name server 402 knows the topology of the
system and how data is distributed. In a multi-tenant system,
the name server 402 also knows the assignment of tenants to
the specific database servers 102. In a system with data
distribution, the name server 402 knows which tables or
partitions of tables are located on which database server 102.
A database server 102 processes a query by asking the name
server 402 about the locations of the involved tables.

30

40

45

55

8

Distributed transactions can be supported to ensure trans-
actional consistency in distributed setups. Each system can
have multiple transaction domains 404 to which the database
servers 102 are uniquely assigned. A distributed transaction
may span only the database servers 102 within the same
transaction domain 404. In a transaction domain 404, one
database server 102 can act as a transaction master, while the
other database servers 102 act as transaction slaves.

In a transaction domain 404, transactions tokens or other
containers for information needed to construct a consistent
view for a transaction or a statement can be centrally
managed by the transaction master 112. In some implemen-
tations, a transaction token can be passed as an additional
context information to all operations and engines that are
involved in the execution of a statement. The transaction
master 112 can also maintain a list of open transactions,
increase timestamp sequences such as transaction identifiers
and commit identifiers, and coordinate distributed commit
operations.

To reduce the likelihood of such an inquiry resulting in a
negative impact on performance, a copy 602 of the topology
and distribution information 604 can be replicated and
cached as a on each host 210. These data can be replicated
to slave name servers 606 that run on each host 210. The
slave name servers 606 can write the replicated data 602 to
a cache in shared memory from which any other database
servers 102 on the same host 210 can read the replicated data
602 (if the data belong to the same system). The block
diagram in FIG. 6 shows an example with a master name
server 610 and slave name servers 606 on three different
hosts 210.

In a data distribution scenario, the partitioning can be
done table wise or also by splitting tables. With table wise
partitioning, the master name server 610 assigns new tables
to a database server 102 based on the current distribution of
tables (number of tables assigned to each database server).
Then data for this table will reside only on that database
server 102. It is also possible to specify that a table is split
over multiple database servers 102. Partitioning of the table
can be done by the master name server 610 based on a size
estimation specified by the application. When records are
inserted into a split table, the records can be distributed to
other database servers 102 based on master name server 610
information. In a multi-tenant system, partitioning can be
done according to tenant 202 as discussed in greater detail
below.

The master name server 610 is a critical component in a
distributed system. To ensure high availability, it is possible
to have one or more additional name servers as backup
master name servers. During normal operation, the backup
master name servers can receive all replicated data like any
slave name server 606. However, if the master name server
610 fails, the backup server takes over the role of the master
name server 610. If the system includes two or more backup
master name servers, the backup master name servers nego-
tiate and one of them takes over the role of the master name
server 610.

An example of an architecture 700 for replication of
central metadata is shown in FIG. 7. Each database server
102 can contain a metadata manager 122 that provides
metadata related interfaces to other system components 702.
In a distributed system, metadata can be defined and stored
centrally and replicated to all database servers 102. Central
metadata 704 can be created in a specific database server
having the role of the central metadata master 706. One
central metadata master 706 can be included per system. On
each other host 210, a local metadata master 710 receives a

US 9,460,176 B2

9

copy 712 of the central metadata from the central metadata
master 706. The local metadata master 710 makes the
replicated metadata available to the database servers on the
same host 210 using shared memory. These database servers
are called metadata slaves 714. Metadata slaves 714 have
only read access to the central metadata 704 or copy of the
central metadata 712. The central metadata master 706 and
local metadata master 710 need not be separate server
processes but roles played by specific database servers.
Metadata replication can be handled transparently by the
metadata managers 122. Other system components 702 can
use the metadata manager interface so the replication of
metadata can be completely hidden from them. For read
access, metadata replication can also be transparent for
database clients 106. Regardless of the database server to
which a database client 106 is connected, the database client
106 can read all central metadata 704.

Central metadata 704 can be created in the central meta-
data master 706. A database client 106 that needs to create
or change central metadata 704 can be required to connect
to the metadata master 706 to do so. However, metadata can
also be defined in the other database servers 102 of an
architecture. Such metadata is local to the database server
102 where it is created and is not shared with others. This
feature can be used for multi-tenant systems for defining
metadata that is private to a specific tenant.

Implementations of the current subject matter can support
multiple tenants 202 at the database level in a multi-tenant
system. Tenants 202 of one system share common metadata
but for the actual tables that hold application data there are
separate instances per tenant. FIG. 8 shows two exemplary
table structures 800 for a multi-tenant system including three
tenants. Rather than storing data for all tenants in a common
table 802 having a tenant identifier column to indicate which
entries belong to each tenant, each tenant can store its own
data in a dedicated table 804, which does not needed a tenant
specifier column.

FIG. 9 illustrates an example of a multi-tenant architec-
ture 900 in an in-memory database system as described
herein. A system supporting multiple tenants can feature
multiple database servers 102 where each database server
102 uniquely belongs to one tenant 202. In such a configu-
ration, each tenant 202 runs in a different operating system
process 902 with its own virtual memory and also has its
own disk volume or volumes 904. As used herein, the term
“tenant server” is used to refer to the database server 102
that belongs to a specific tenant 202.

According to at least one implementation, a system can
include at least one special tenant called the system tenant
906. The system tenant 906 can be the meta data owner of
a distributed system and can also contain the central meta-
data 704 available to all other tenants 202 for read access.
Tenants 202 can also have their own private metadata 910
that can define tenant-dependent extensions in tenant-depen-
dent tables 912 that are based on standard tables defined by
the central metadata 704. The tenant private metadata 910
can also define tenant private tables 914. The system tenant
906 can contain tenant independent application data stored
in tenant independent tables 916 that can be read by all
tenants 202. Normal (i.e. non-system) tenants are isolated
from each other. In the context of one tenant 202, data from
other normal tenants 920 cannot be accessed. If a client 106
needs access to more than one normal tenant (for example a
tenant management tool), it needs to open separate database
connections to each tenant 202. To improve tenant isolation,
each tenant 202 can be assigned to its own transaction

10

15

20

25

30

35

40

45

50

55

60

65

10

domain 404 to ensure that a transaction is restricted to one
tenant 202 and that a single transaction cannot span multiple
tenants 202, 914.

Having different disk volumes 904 for different tenants
202, 914 can facilitate support for tenant operations such as
tenant copy, tenant move, tenant deletion, or the like. When
relocating a tenant 202 to a different database server 102 in
the same system, the tenant specific disk volume 904 can be
detached from the original database server 102 and attached
to the new database server 102. For moving or copying
tenants 202 between different systems, shared metadata can
be handled by ensuring that the tenant data to be moved is
consistent with central metadata in the new system.

The block diagram 1000 shown in FIG. 10 illustrates how
data and metadata can be shared in a multi-tenant enabled
system. In some implementations, three categories of tables
can exist in a multi-tenant in-memory system: tenant inde-
pendent tables 916, tenant dependent tables 912, and tenant
private tables. Tenant independent tables 916 can exist in a
single instance per system with data and central metadata
704 as shared read-only information 1002 stored in the
system tenant 906. A database server 102 of a normal tenant
202, 920 has read access to the tenant independent tables
916. As noted above, tenant dependent tables 912 can be
defined centrally, e.g. by central metadata 704 stored in the
system tenant 906. However, each tenant 202, 920 has its
own instance of these tenant independent tables 916, which
are not visible from other tenants 202, 920. For tenant
private tables 914, both metadata and content are local to the
tenant 202, 920.

The table 1100 of FIG. 11 further lists features of meta-
data and content storage and access for the three types of
tables. When a table is created in a normal tenant 202, 920,
it can be created as a tenant private table 914. Tenant
independent tables 916 and tenant dependent tables 912
cannot be created in a normal tenant 202, 920. In the system
tenant 906, tables of all three types can be created. The
desired type can be specified when the table is created in the
system tenant 906.

As stated above, a database client 106 can require mul-
tiple database connections if it needs to access more than one
tenant 202. However, sometimes applications need to com-
bine tenant dependent tables 912 with tenant independent
tables 916, which are stored in the system tenant, in one
query—for example in a join operation, a sub query or a
union. To process this type of queries, the tenant servers 102
for normal tenants 202, 920 have indirect read access to
tenant independent tables 916 (e.g. as noted by the dotted
read arrows in FIG. 10). A database client 106 that is
connected to the database server 102 of a normal tenant 202,
920 may combine tenant independent tables 916 and tenant
dependent tables 912 in the same query. If a tenant database
server 102 receives such a query, it can delegate the corre-
sponding operations to the database server 102 of the system
tenant 906, combine the results with local results, and return
them to the database client 106. In this manner, the database
clients need not be aware that the system tenant 906 is
involved in the query.

Because the system tenant 906 belongs to a different
transaction domain 404, a query that involves access to
tenant independent tables 916 can be executed using two
different transactions. Therefore, transparent access to tenant
independent tables 916 by a normal tenant 202, 920 is
limited to read-only operations. If a database server 102 that
is assigned to a normal tenant 202, 920 receives a request to
modify the content of tenant independent tables 916, it
reports an error. A database client 106 that needs to write

US 9,460,176 B2

11

tenant independent tables 916 must do so by opening a
connection to the system tenant server 906.

If metadata is created in a normal tenant 202, 920, it can
be stored in the tenant 202, 920 as tenant private metadata
910. Tenant private metadata 910 can define tables, views,
functions, and the like that exist only in one tenant 202 and
cannot be accessed from other tenants 920. When reading
metadata in the context of one tenant 202, 920, the result can
be created as the union of central metadata 704 and tenant
private metadata 910. This process can be completed by one
or more metadata managers 112 and can be hidden from
other system components 702.

FIG. 12 shows a process flow chart 1200 illustrating
features consistent with implementations of the current
subject matter. At 1202, an in-memory database server 102
hosting a tenant 202 of a multi-tenant software architecture
receives a definition of a custom data field that is unique to
an organization having isolated access to the tenant 202. The
custom data field extends a standard table defined by central
metadata 704 stored at a system tenant 906 of the multi-
tenant software architecture. At 1204, tenant private meta-
data 910 that include the definition are stored in memory
accessible only to the tenant 202. A tenant-dependent table
912 that includes the custom data field is formed at 1206.
The forming includes retrieving central metadata 704 defin-
ing the standard table from the system tenant 906 and adding
the custom data field using the definition. In additional
optional features, a second definition of a customized tenant
private table 914 that is unique to the tenant 202 can be
received by the in-memory database server 102 at 1210. At
1212, additional tenant private metadata 910 that include the
second definition are stored in memory accessible only to
the tenant 202. At 1214, the tenant-dependent and/or private
table can be presented for access via a database client 106 at
the organization.

Aspects of the subject matter described herein can be
embodied in systems, apparatus, methods, and/or articles
depending on the desired configuration. In particular, vari-
ous implementations of the subject matter described herein
can be realized in digital electronic circuitry, integrated
circuitry, specially designed application specific integrated
circuits (ASICs), computer hardware, firmware, software,
and/or combinations thereof. These various implementations
can include implementation in one or more computer pro-
grams that are executable and/or interpretable on a program-
mable system including at least one programmable proces-
sor, which can be special or general purpose, coupled to
receive data and instructions from, and to transmit data and
instructions to, a storage system, at least one input device,
and at least one output device.

These computer programs, which can also be referred to
programs, software, software applications, applications,
components, or code, include machine instructions for a
programmable processor, and can be implemented in a
high-level procedural and/or object-oriented programming
language, and/or in assembly/machine language. As used
herein, the term “machine-readable medium” refers to any
computer program product, apparatus and/or device, such as
for example magnetic discs, optical disks, memory, and
Programmable Logic Devices (PLDs), used to provide
machine instructions and/or data to a programmable proces-
sor, including a machine-readable medium that receives
machine instructions as a machine-readable signal. The term
“machine-readable signal” refers to any signal used to
provide machine instructions and/or data to a programmable
processor. The machine-readable medium can store such
machine instructions non-transitorily, such as for example as

10

15

20

25

30

35

40

45

50

55

60

65

12

would a non-transient solid state memory or a magnetic hard
drive or any equivalent storage medium. The machine-
readable medium can alternatively or additionally store such
machine instructions in a transient manner, such as for
example as would a processor cache or other random access
memory associated with one or more physical processor
cores.

To provide for interaction with a user, the subject matter
described herein can be implemented on a computer having
a display device, such as for example a cathode ray tube
(CRT) or a liquid crystal display (LCD) monitor for dis-
playing information to the user and a keyboard and a
pointing device, such as for example a mouse or a trackball,
by which the user may provide input to the computer. Other
kinds of devices can be used to provide for interaction with
a user as well. For example, feedback provided to the user
can be any form of sensory feedback, such as for example
visual feedback, auditory feedback, or tactile feedback; and
input from the user may be received in any form, including,
but not limited to, acoustic, speech, or tactile input. Other
possible input devices include, but are not limited to, touch
screens or other touch-sensitive devices such as single or
multi-point resistive or capacitive trackpads, voice recogni-
tion hardware and software, optical scanners, optical point-
ers, digital image capture devices and associated interpre-
tation software, and the like.

The subject matter described herein can be implemented
in a computing system that includes a back-end component,
such as for example one or more data servers, or that
includes a middleware component, such as for example one
or more application servers, or that includes a front-end
component, such as for example one or more client com-
puters having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described herein, or any combination of
such back-end, middleware, or front-end components. A
client and server are generally, but not exclusively, remote
from each other and typically interact through a communi-
cation network, although the components of the system can
be interconnected by any form or medium of digital data
communication. Examples of communication networks
include, but are not limited to, a local area network
(“LAN"), a wide area network (“WAN™), and the Internet.
The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

The implementations set forth in the foregoing description
do not represent all implementations consistent with the
subject matter described herein. Instead, they are merely
some examples consistent with aspects related to the
described subject matter. Although a few variations have
been described in detail herein, other modifications or addi-
tions are possible. In particular, further features and/or
variations can be provided in addition to those set forth
herein. For example, the implementations described above
can be directed to various combinations and sub-combina-
tions of the disclosed features and/or combinations and
sub-combinations of one or more features further to those
disclosed herein. In addition, the logic flows depicted in the
accompanying figures and/or described herein do not nec-
essarily require the particular order shown, or sequential
order, to achieve desirable results. The scope of the follow-
ing claims may include other implementations or embodi-
ments.

US 9,460,176 B2

13

What is claimed is:

1. A computer program product comprising a non-transi-
tory machine-readable medium storing instructions that,
when executed by at least one programmable processor,
cause the at least one programmable processor to perform
operations comprising:

receiving, at an in-memory database server hosting a

tenant of a multi-tenant software architecture, a defi-
nition of a custom data field that is unique to an
organization having isolated access to the tenant, the
custom data field extending a standard table defined by
central metadata stored at a system tenant of the
multi-tenant software architecture;

storing, in the in-memory database server rather than in a

disk-based storage, tenant private metadata comprising
the definition, wherein the tenant private metadata is
only accessible to the tenant, wherein the in-memory
database server is hosted on a virtual machine of a host
computer system, wherein the in-memory database
comprises an in-memory column engine that uses a
column format for storage and an in-memory row
engine that uses a row format for storage, the in-
memory row engine being configured to exchange an
intermediate row result with the in-memory column
engine by providing the intermediate row result mate-
rialized as a complete row, and the in-memory column
engine being configured to exchange an intermediate
column result with the in-memory row engine by
exposing the intermediate column result using an itera-
tor interface;

forming a tenant-dependent table comprising the custom

data field, the forming comprising retrieving, from the
system tenant, central metadata defining the standard
table and adding the custom data field using the defi-
nition; and

presenting the tenant-dependent table for access via a

database client at the organization.

2. A computer program product as in claim 1, wherein the
operations further comprise:

receiving, at the in-memory database server, a second

definition of a customized tenant private table that is
unique to the tenant;

storing, in the in-memory database server, additional

tenant private metadata comprising the second defini-
tion; and

presenting the tenant private table for access via the

database client at the organization.

3. A computer program product as in claim 1, wherein the
multi-tenant software architecture comprises a plurality of
tenants hosted at a backend system, each tenant of the
plurality of tenants comprising its own dedicated in-memory
database server having unique access to tenant-specific data,
at least one of the plurality of database servers being
provided via each of a plurality of hosts on the backend
system.

4. A computer program product as in claim 3, wherein the
plurality of database servers share the central metadata of
the system tenant.

5. A computer program product as in claim 3, wherein the
system tenant comprises a central metadata master database
server responsible for creating and maintaining the central
metadata, and wherein each host of the plurality of hosts
comprises a local metadata master database server that
receives a copy of the central metadata from the central
metadata master database server.

6. A computer program product as in claim 5, wherein the
operations further comprise:

5

10

15

20

25

30

35

40

45

50

55

60

65

14

receiving, at the central metadata master database server,
an updated definition of a tenant dependent table that is
available to all of the plurality of tenants;

storing, in a system tenant memory accessible only to the

system tenant, new central metadata comprising the
updated definition; and

propagating the new central metadata to each local meta-

data master database server for use by the plurality of
tenants.

7. A computer program product as in claim 1, wherein the
definition of the custom data field further comprises at least
one of a view of the tenant-dependent table and a function
associated with the tenant.

8. A computer program product as in claim 1, wherein the
in-memory database is stored in the column format to allow
a search of the in-memory database to be performed in a
contiguous memory array, and wherein a time to execute the
search is reduced when the contiguous memory array is
cache memory of the at least one programmable processor.

9. A system comprising:

at least one programmable processor; and

a machine-readable medium storing instructions that,

when executed by the at least one programmable pro-

cessor, cause the at least one programmable processor

to perform operations comprising:

receiving, at an in-memory database server hosting a
tenant of a multi-tenant software architecture, a
definition of a custom data field that is unique to an
organization having isolated access to the tenant, the
custom data field extending a standard table defined
by central metadata stored at a system tenant of the
multi-tenant software architecture;

storing, in the in-memory database server rather than in
a disk-based storage, tenant private metadata com-
prising the definition, wherein the tenant private
metadata is only accessible to the tenant, wherein the
in-memory database server is hosted on a virtual
machine of a host computer system, wherein the
in-memory database comprises an in-memory col-
umn engine that uses a column format for storage
and an in-memory row engine that uses a row format
for storage, the in-memory row engine being con-
figured to exchange an intermediate row result with
the in-memory column engine by providing the
intermediate row result materialized as a complete
row, and the in-memory column engine being con-
figured to exchange an intermediate column result
with the in-memory row engine by exposing the
intermediate column result using an iterator inter-
face;

forming a tenant-dependent table comprising the cus-
tom data field, the forming comprising retrieving,
from the system tenant, central metadata defining the
standard table and adding the custom data field using
the definition; and

presenting the tenant-dependent table for access via a
database client at the organization.

10. A system as in claim 9, wherein the operations further
comprise:

receiving, at the in-memory database server, a second

definition of a customized tenant private table that is
unique to the tenant;

storing, in the in-memory database server, additional

tenant private metadata comprising the second defini-
tion; and

presenting the tenant private table for access via the

database client at the organization.

US 9,460,176 B2

15

11. A system as in claim 9, wherein the multi-tenant
software architecture comprises a plurality of tenants hosted
at a backend system, each tenant of the plurality of tenants
comprising its own dedicated in-memory database server
having unique access to tenant-specific data, at least one of
the plurality of database servers being provided via each of
a plurality of hosts on the backend system.

12. A system as in claim 11, wherein the plurality of
database servers share the central metadata of the system
tenant.

13. A system as in claim 11, wherein the system tenant
comprises a central metadata master database server respon-
sible for creating and maintaining the central metadata, and
wherein each host of the plurality of hosts comprises a local
metadata master database server that receives a copy of the
central metadata from the central metadata master database
server.

14. A system as in claim 13, wherein the operations
further comprise:

receiving, at the central metadata master database server,

an updated definition of a tenant dependent table that is
available to all of the plurality of tenants;

storing, in a system tenant memory accessible only to the

system tenant, new central metadata comprising the
updated definition; and

propagating the new central metadata to each local meta-

data master database server for use by the plurality of
tenants.

15. A computer-implemented method comprising:

receiving, at an in-memory database server hosting a

tenant of a multi-tenant software architecture, a defi-
nition of a custom data field that is unique to an
organization having isolated access to the tenant, the
custom data field extending a standard table defined by
central metadata stored at a system tenant of the
multi-tenant software architecture;

storing, in the in-memory database server rather than in a

disk-based storage, tenant private metadata comprising
the definition, wherein the tenant private metadata is
only accessible to the tenant, wherein the in-memory
database server is hosted on a virtual machine of a host
computer system, wherein the in-memory database
comprises an in-memory column engine that uses a
column format for storage and an in-memory row
engine that uses a row format for storage, the in-
memory row engine being configured to exchange an
intermediate row result with the in-memory column
engine by providing the intermediate row result mate-
rialized as a complete row, and the in-memory column
engine being configured to exchange an intermediate
column result with the in-memory row engine by
exposing the intermediate column result using an itera-
tor interface;

15

20

30

40

45

16

forming a tenant-dependent table comprising the custom
data field, the forming comprising retrieving, from the
system tenant, central metadata defining the standard
table and adding the custom data field using the defi-
nition; and

presenting the tenant-dependent table for access via a

database client at the organization.

16. A computer-implemented method as in claim 15,
further comprising:

receiving, at the in-memory database server, a second

definition of a customized tenant private table that is
unique to the tenant;

storing, in the in-memory database server, additional

tenant private metadata comprising the second defini-
tion; and

presenting the tenant private table for access via the

database client at the organization.

17. A computer-implemented method as in claim 15,
wherein the multi-tenant software architecture comprises a
plurality of tenants hosted at a backend system, each tenant
of the plurality of tenants comprising its own dedicated
in-memory database server having unique access to tenant-
specific data, at least one of the plurality of database servers
being provided via each of a plurality of hosts on the
backend system.

18. A computer-implemented method as in claim 17,
wherein the plurality of database servers share the central
metadata of the system tenant.

19. A computer-implemented method as in claim 17,
wherein the system tenant comprises a central metadata
master database server responsible for creating and main-
taining the central metadata, and wherein each host of the
plurality of hosts comprises a local metadata master data-
base server that receives a copy of the central metadata from
the central metadata master database server.

20. A computer-implemented method as in claim 19,
wherein the operations further comprise:

receiving, at the central metadata master database server,

an updated definition of a tenant dependent table that is
available to all of the plurality of tenants;

storing, in a system tenant memory accessible only to the

system tenant, new central metadata comprising the
updated definition; and

propagating the new central metadata to each local meta-

data master database server for use by the plurality of
tenants.

21. A computer-implemented method as in claim 15,
wherein at least one of the receiving, the storing, the
forming, and the presenting is performed by at least one
programmable processor.

22. A computer-implemented method as in claim 15,
wherein the custom data field is associated with one or more
records of metadata.

